146 research outputs found

    Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    Get PDF
    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASAs Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEAs of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Societys Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general

    Core cracking and hydrothermal circulation can profoundly affect Ceres' geophysical evolution

    Get PDF
    Observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock. Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code, we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia, by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The effect of heating from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets,” core cooling events lasting ∼50 Myr during which Ceres' interior temperature profile becomes very shallow and its hydrosphere is largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) would suggest that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter, whose arrival at Ceres is imminent, could help discriminate between scenarios for Ceres' evolution

    Approach to exploring interstellar objects and long-period comets

    Get PDF
    This paper aims to identify the best approaches for exploring planetary bodies with very long orbital periods, i.e., bodies that approach Earth only once in a lifetime. This includes long-period comets (LPCs), and the newly discovered classes of Manx comets and interstellar objects (ISOs). Long-period comets are high scientific value targets, as indicated in the current Planetary Science Decadal Survey. Interstellar objects open the fascinating possibility to sample exoplanetary systems. Manxes hold the key to resolving long-time questions about the early history of our solar system. Specific strategies need to be implemented in order to approach bodies whose orbital properties are at the same time extreme and unpredictable. As ground-based telescope capabilities are greatly improving, it will soon become possible to detect LPCs more than ten years before they reach perihelion. On the other hand, the non- or weakly active Manx comets and ISOs require reactive exploration strategies. All of these bodies offer many challenges for close proximity observations that can be addressed by the deployment of multi-spacecraft architectures. We describe several concepts that leverage the many advantages offered by distributed sensors, fractionated payload, and various mother-daughter configurations to achieve high impact science within the reach of low-cost missions

    Near-Earth Asteroid (NEA) Scout

    Get PDF
    Near-Earth asteroids (NEAs) are the most easily accessible bodies in the solar system, and detections of NEAs are expected to grow exponentially in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a potential mission concept, tentatively called 'NEAScout,' utilizing a low-cost platform such as CubeSat in response to the current needs for affordable missions with exploration science value. The NEAScout mission concept would be treated as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV)

    Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies

    Get PDF
    This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable
    corecore